Efficient Centrality Monitoring for Time-Evolving Graphs

نویسندگان

  • Yasuhiro Fujiwara
  • Makoto Onizuka
  • Masaru Kitsuregawa
چکیده

The goal of this work is to identify the nodes that have the smallest sum of distances to other nodes (the lowest closeness centrality nodes) in graphs that evolve over time. Previous approaches to this problem find the lowest centrality nodes efficiently at the expense of exactness. The main motivation of this paper is to answer, in the affirmative, the question, ‘Is it possible to improve the search time without sacrificing the exactness?’. Our solution is Sniper, a fast search method for time-evolving graphs. Sniper is based on two ideas: (1) It computes approximate centrality by reducing the original graph size while guaranteeing the answer exactness, and (2) It terminates unnecessary distance computations early when pruning unlikely nodes. The experimental results show that Sniper can find the lowest centrality nodes significantly faster than the previous approaches while it guarantees answer exactness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centrality Prediction in Mobile Social Networks

By analyzing evolving centrality roles using time dependent graphs, researchers may predict future centrality values. This may prove invaluable in designing efficient routing and energy saving strategies and have profound implications on evolving social behavior in dynamic social networks. In this paper, we propose a new method to predict centrality values of nodes in a dynamic environment. The...

متن کامل

Proximity Tracking on Time-Evolving Bipartite Graphs

Given an author-conference network that evolves over time, which are the conferences that a given author is most closely related with, and how do these change over time? Large time-evolving bipartite graphs appear in many settings, such as social networks, co-citations, market-basket analysis, and collaborative filtering. Our goal is to monitor (i) the centrality of an individual node (e.g., wh...

متن کامل

Fully-Dynamic Approximation of Betweenness Centrality

Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Since an exact computation is prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in evolving networks. In previou...

متن کامل

Further Results on Betweenness Centrality of Graphs

Betweenness centrality is a distance-based invariant of graphs. In this paper, we use lexicographic product to compute betweenness centrality of some important classes of graphs. Finally, we pose some open problems related to this topic.

متن کامل

Activity Monitoring for large honeynets and network telescopes

This paper proposes a new distributed monitoring approach based on the notion of centrality of a graph and its evolution in time. We consider an activity profiling method for a distributed monitoring platform and illustrate its usage in two different target deployments. The first one concerns the monitoring of a distributed honeynet, while the second deployment target is the monitoring of a lar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011